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What is the best programming model for
shared memory clusters?

l How do different
programming models affect
application performance?

l How do hardware
characteristics affect
application performance?

l How much work does it take
to move to a new
programming model?

CPUs bus shared memory
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Outline

l Hardware environment

l Mixed programming models

l Three mixed-model codes
—Ares:  regular-grid hydrodynamics
—Ardra:  neutral particle transport
—JEEP:  molecular dynamics

l Observations on mixed models
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 Hardware environment

l IBM “Tech Refresh” system
—168 four-way SMP nodes
—Message passing can use “User Space” or “IP”
—No global shared memory

l DEC cluster
—Typical configuration has 80 CPUs divided (not

equally) among 8 nodes
—Message passing can span all CPUs, although

most runs are not over the full system (capacity,
not capability)
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Programming models: Pure MPI

l Each CPU runs a separate MPI job

l Requires no changes for existing MPI codes

l Does not take advantage of shared memory

l Message passing is theoretically less efficient than
shared memory

l Until recently, IBM didn’t support multiple user-space
tasks on the same node
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Programming models: Threads

l Explicit thread libraries (pthreads)
—Maximum control
—Most difficult threading model

l Parallelization directives
—Examples include OpenMP and IBM SMP
— Implies loop-level parallelization
—Works best when loop iterations are large and

independent

l Threaded libraries
— If code spends substantial time in standard

function (e.g. Fourier transform), can look for
threaded version

—Easiest to use
—Performance depends on time spent in library
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Mixed programming models

l Use MPI for internode communication and a threaded
model within nodes

l Requires a thread-safe MPI library
—Not all threads may communicate, but MPI may

call non-thread-safe functions (e.g. malloc)

l Allows (one hopes) efficient use of shared memory

l Other models for multilevel parallelism exist (e.g.
KeLP) but they aren’t used in our codes

l Three examples from LLNL:  Ares, Ardra, JEEP
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Ares: Regular grid hydrodynamics

l Domain overloading
—Decomposes problem space into more domains

than processes
— Improves load balance and cache use
—Makes threading straightforward
—One thread handles all MPI communication

l Initial threading used pthreads
—Thread pool kept threads alive between phases
—Complicated to program

l Switched to parallelization directives when available
—Much easier to manage
—No significant performance difference
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Ardra: Neutral particle transport

l Block-structured mesh

l About half the time spent in a “sweep” phase

l Programming model is data-driven for both message
passing and threads

l Explicit threads scan work queue; compute each data
point when its input dependencies are satisfied

l Initially used a thread pool; now spawn threads as
needed

l Code is not well-suited for loop-based parallelism
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JEEP: Molecular dynamics

l Computes molecular interactions at quantum-
mechanical level

l Solves Schrödinger equation at each time step

l Message passing code is parallelized over electronic
states

l Each state requires Fourier transform computations

l Fourier transform done with IBM’s multithreaded
ESSL code

l Easy way to get multithreading; speedup is limited
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Conclusions

DirectivesPthreads Threaded libraries

Ease of use

Opportunities for parallelism

l For loop-level parallelism, it’s better to parallelize one outer loop
than many inner loops, if possible

l Directive-based compilers are maturing

l No hard data yet on performance of threads vs. pure MPI; initial
results are mixed
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